
International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013                                                                                  
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org  

Super-Resolution Mosaicing of Unmanned Aircraft 
System (UAS) Surveillance Video Frames 

Debabrata Ghosh, Naima Kaabouch, and William Semke 

Abstract- Unmanned Aircraft Systems have been used in many military and civil applications, particularly surveillance. However, video 
frames are often blurry, noisy, and exhibit insufficient spatial resolution. This project aims to develop a vision-based algorithm to improve 
the quality of UAS video frames. This algorithm will be able to generate high resolution mosaic output through a combination of image 
mosaicing and super-resolution (SR) reconstruction techniques. The mosaicing algorithm is based on the Scale Invariant Feature 
Transform, Best Bins First, Random Sample Consensus, reprojection, and stitching algorithms. A regularized spatial domain-based SR 
algorithm is used to super resolve a mosaic input. The performance of the proposed system is evaluated using three metrics: Mean Square 
Error, Peak Signal-to-Noise Ratio, and Singular Value Decomposition-based measure. Evaluation has been performed using 36 test 
sequences from three categories: images of 2D surfaces, images of outdoor 3D scenes, and airborne images from an Unmanned Aerial 
Vehicle. Exhaustive testing has shown that the proposed SR mosaicing algorithm is effective in UAS applications because of its relative 
computational simplicity and robustness. 

Index terms- SIFT, Mean Square Error, Peak Signal-to-Noise Ratio, Singular Value Decomposition, regularization parameter, Huber prior, 
Laplacian prior. 

——————————      —————————— 
 

1  INTRODUCTION                                                    
IGITAL images are often limited in quality because of 
the imperfections  of the image-capturing devices (e.g., 
limited sensor density, finite shutter speed, finite shutter 

time,  and  sensor  noise)  and  instability  of  the  observed  scene  
(e.g., object motion and media turbulence). However, UAS 
applications require higher quality images to facilitate better 
content visualization and scene recognition. Since constructing 
optical  components to capture such high resolution images is  
prohibitively expensive and not practical in real applications 
such as UAS surveillance operations, a more feasible solution 
is  to  use  signal  processing  to  post-process  the  acquired  low  
quality images [1].  Undoing the effect  of  blur and noise from 
an image does not address the low spatial resolution problem. 
Image interpolation, on the other hand, increases the size of a 
single image. However, the quality of an image magnified 
from an aliased low resolution image is inherently of poor 
quality. If interpolation along with restoration can be 
performed on a sequence of images, depicting the same 
underlying scene, additional information from multiple 
images can be fused to construct a super resolution image.  
 
 
 

The combination of image mosaicing and super-resolution 
reconstruction, i.e. super-resolution mosaicing, is a powerful 
means of representing all of the information of multiple 
overlapping images to obtain a high resolution panoramic 
view of a scene. The stability of a super-resolution mosaicing 
method requires that multiple images are correlated solely by 
planar homography. Two important situations where 
consecutive images are exactly correlated by planar 
homography are: images of a plane produced by a camera 
which purely rotates about its optical center and images 
produced by a camera zooming in or out of  the scene.  These 
two situations guarantee that images do not show parallax 
effect, i.e. the scene is approximately planar [2]. Under these 
circumstances, the underlying scene can be reconstructed with 
higher resolution from the correlated frames.  

Several mosaicing algorithms and super resolution 
reconstruction algorithms have been proposed over the last 
decades [3]-[9]. Some of these algorithms include super 
resolution image reconstruction using the ICM algorithm 
proposed by Martins [10], self-adaptive blind super-resolution 
image reconstruction proposed by Bai [11], super resolution 
image reconstruction based on MWSVR estimation proposed 
by Cheng [12], and super resolution image reconstruction 
based on the minimal surface constraint on the manifold 
proposed by Yuan [13]. However, very little work has been 
done for super resolution mosaicing, which encompasses both 
a SR algorithm and a mosaicing algorithm at the same time. 
Furthermore, as algorithms have become more accurate in 
recent years, the necessity for quantitative evaluation has 
become more and more necessary.  

Tian et al. [14] reconstructed SR images from several LR 
images generated from high resolution (HR) frames. They 
used a ground truth and three different metrics to evaluate the 
performance of the SR technique objectively. However, 
availability  of  the  ground  truth  is  unlikely  in  most  real  
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applications and, furthermore the performance metrics lack 
simplicity because they require computing SIFT feature points 
and segments from images. Kim et al. [15] used ground truth 
along with four different performance metrics for quantitative 
evaluation. However, in spite of their complicated algorithms, 
human visual system-based objective measures (eg. structural 
similarity, color difference equations) do not appear to be 
superior  to  simple  pixel-based  measures  like  mean  square  
error and peak signal-to-noise ratio. Additionally, the 
dynamic range of structural similarity is too small to compare 
quantitatively the performance of SR mosaicing algorithms. 

This paper describes a SIFT based mosaicing algorithm 
along with a regularized spatial domain based SR algorithm to 
perform SR mosaicing. To assess the effectiveness of the 
proposed algorithm three computationally very simple 
metrics are used.   

 

2  BACKGROUND 
A real scene gets warped by the camera lens because of the 

relative motion between the scene and the camera. Thus the 
inputs to the camera are multiple frames of a real scene 
connected  by  local  or  global  shifts.  In  addition,  frames  are  
often  degraded  by  blurring  effects  and  noises.  Finally,  the  
camera sensor discretizes (downsamples) the frames which 
result in digitized, blurry, and noisy frames. Based on the 
aforementioned image formation model, super resolution 
mosaicing is  an inverse problem i.e.  achieving the SR mosaic 
from the observed LR frames. A single observation makes the 
inverse problem heavily underdetermined, resulting in an 
unstable solution [16]. Thus,  if  we  assume  K  numbers  of  LR  
frames are available, the kth LR image can be represented as: 

 
= [ ] +         for 1  k K                          (1) 

Where x is the SR mosaic; D, B , W  and n  are decimation 
operator, blur matrix, warp operator and the additive noise, 
respectively. The reconstruction of the kth warped SR image 
from x is represented by R[. ]  [17]. 

It is obvious that finding an estimate of a SR mosaic is not 
solely based on the availability of captured LR frames. Rather, 
it depends on several other specifications, such as the blurring 
process and the noise.  If  the blur is  assumed to be linear and 
spatially invariant, it could be modeled by convolving the 
image with a low-pass filter. Noise is assumed to be additive 
white Gaussian noise in the above image acquisition model. 
From equation (1), the maximum likelihood estimate of the SR 
mosaic x is  

= arg [ ]                         (2) 

Where .  is  the  2-norm.  SR  mosaicing  is  an  ill-posed  
problem because of  an insufficient  number of  LR frames and 
ill-conditioned blur operators [18].  

In  order  to  make  the  SR  mosaicing  process  a  well-posed  
problem, prior information is added in the solution space. 

Using deterministic regularization, the constrained least 
square (CLS) can be formulated as:  

= [ ] +                         (3) 

Or  

= arg [ ]

+ ( , )
( )

                               (4) 

Equation (3) uses the Laplacian prior, whereas the equation 
(4) uses the Huber prior. The advantage of the Huber prior is 
that it penalizes the edges less severely than the Laplacian 
prior.  is the regularization parameter, L is the Laplacian 
operator, (g, ) is the Huber function. G(x) is the set of 
gradient estimates over the cliques [19].  represents a 
gradient which changes the penalty from non-linear to linear 
as follows: 

 

( , ) = ,                      | |
2 | | ,    

                                         (5) 

Gradient  descent  algorithm  can  be  used  to  minimize  the  
cost functional in (3) or (4). According to the analysis in [15] 
the iterative update for x can be expressed as 

 
( ) = + ( ){ [ ( [ ] )]

}                                                     (6) 

Or  

( ) = + ( ){ [ ( [ ] )]
( , )}                                      (7) 

Where ( ) is the step size of the nth iteration, D  is  the  
interpolation operator, W  is the forward warping operator 
(assuming W to be the backward warping operator),  B  
represents  convolution  with  a  PSF  kernel  which  is  flipped  to  
the PSF kernel used to model the B operator. 

According to [20], regularization parameter  can  be  
expressed as follows. 

 

 =
[ ]

  (6)              (8) 

=
[ ]

( , )   (7)                  (9) 
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3  APPROACH 
The  proposed  system  uses  a  combination  of  a  mosaicing  

algorithm and a super resolution algorithm. The mosaicing 
system is based on the Scale Invariant Feature Transform 
(SIFT), Best Bins First (BBF), Random Sample Consensus 
(RANSAC), reprojection and stitching algorithms. The SR 
system, on the other hand, is based on a deterministic 
regularization algorithm, which uses gradient descent 
optimization in order to minimize the cost functional in (3) or 
(4) as discussed in the previous section.  

Fig. 1 shows the flowchart of the mosaicing algorithm. This 
algorithm reads the input frames and applies SIFT algorithm 
to  extract  feature  points  from  these  frames.  SIFT  uses  five  
steps: scale-space construction, scale-space extrema detection, 
keypoint localization, orientation assignment, and defining 
keypoint descriptors. Initially, a Gaussian filter with variable 
scale is employed to construct the scale-space. Once it 
constructed, the difference of Gaussian scale-space is 
computed and extrema are detected by comparing a pixel to 
its 26 neighbors at the current and adjacent scales. In order to 
discard the undesirable low contrast and roughly localized 
key points keypoint localization is used. For each key point 
one or more orientation assignments are determined using the 
local image gradient directions. These orientation values are 
then accumulated into an orientation histogram that 
summarizes the contents over 4x4-pixel neighborhoods with 8 
bins  each  [21].  Finally,  a  128  dimension  descriptor  vector  is  
assigned to each key point. 

SIFT feature points extracted from a sequence of images are 
stored into databases. BBF algorithm (a modified version of 
the k-d tree) is then used to estimate the initial matching 
points between image pairs. This is achieved by finding the 
nearest  neighbor  of  a  keypoint  in  the  first  image  from  a  
database of keypoints for the second image. Keypoint with the 
minimum Euclidean distance for a 128 dimension descriptor 
vector is regarded as nearest neighbor.  

RANSAC algorithm uses those initial matching points and 
removes the outliers to estimate an optimum homography 
matrix based on homography constraints (geometric distance 
error, maximum number of inliers, etc.). The homography 
matrix is a 3x3 matrix that takes into account several image 
transformation parameters. To compute this matrix, one of the 
input frames is assigned as the reference frame and the current 
homography matrix is multiplied with all the previous 
homograph matrices until the reference frame is reached. 
Using the homography metrics, images are warped into a 
common coordinate frame.    

Finally, stitching is employed to obtain the final mosaicing 
output.  To achieve the stitching,  each pixel  in every frame of  
the scene is checked for whether it belongs to the warped 
second  frame  or  not.  If  it  belongs,  then  that  pixel  is  assigned  
the  value  of  the  corresponding  pixel  from  the  second  frame.  
Otherwise, it is assigned the value of the corresponding pixel 
from the first frame. 

Fig. 2 shows the flowchart of the SR mosaicing algorithm. 
The  system  takes  LR  frames  and  the  maximum  number  of  
iterations as inputs to the algorithm. After the input LR frames 

are interpolated, a mosaic (say the initial mosaic) is computed 
out of those interpolated LR frames. Inverse mosaicing is used 
to reconstruct the LR frames from the mosaic. This inverse 
mosaicing makes use of inverse warping and downsampling 
to find the reconstructed LR frames. Inverse warping utilizes 
the same homography metrics that were used in warping the 
LR  frames  to  the  reference  frame  while  making  the  initial  
mosaic. Those reconstructed frames are then subtracted from  
 
 

       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
   

       
      

 

               Fig. 1. Flowchart of the mosaicing system 

the  original  LR  frames  to  find  the  difference  images.  The  
difference images are similarly interpolated and an error 
mosaic is computed using all of these images. This error 
mosaic is added to a regularization term and subsequently 
used to update the initial mosaic. This process is repeated 
iteratively  to  minimize  the  cost  functional  in  Equation  (3)  or  
Equation (4) until the maximum number of iterations has been 
reached.  

Conceptually, the regularization parameter should be 
chosen  such  that  it  gets  smaller  with  the  progress  of  the  
iterative  process  as  we  would  be  moving  toward  a  better  
solution. The numerators of the regularization parameters in 
both  equations  (8)  and  (9)  are  the  error  energy,  which  is  the  
difference between the original LR frames and the 
reconstructed LR frames. This error energy becomes smaller as 
the iteration proceeds. The denominators of both equations (8) 
and (9), on the other hand, increase as the iterative process 
advances. This is because this iterative algorithm tries to 
restore the high frequency components in x . Thus both the 
regularization parameters in equations (8) and (9) decrease 
with the iteration.  in the flowchart expresses the step size of 
the algorithm for an iteration. To make the step size adaptive, 
it  is  allowed  to  change  at  every  iteration  based  on  the  term:  

Input frames 

RANSAC for homography 

Reprojection of frames 

Stitching multiple frames 

SIFT feature extraction 

SIFT matching using BBF 

Start 

End of mosaicing algorithm 
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mosaic of interpolated difference images - regularization term. 
Fig. 3 illustrates the schematic of the algorithm.  

To make the evaluation process as controllable as possible, 
synthetic image frames are created by using several wide-
angle reference color images and then creating overlapping 
input data. The wide-angle reference images act as real-world 
sceneries. The most common camera-related transformation 
(translation) is applied to the input data. Data frames are 
created in such a way that the consecutive frames have at least 
a  50%  overlapping  region.,  which  is  regarded  as  one  of  the  
requirements of the SIFT algorithm. The process of generating 
the sequence of input data frames simulates the real situation 
of photographing multiple shots that cover different areas of a 
scene. The generated frame sequence is added to different 
synthetic blurs within acceptable margins. This sequence of 
frames  is  then  fed  to  the  SR  mosaicing  algorithm  and  the  
super  resolved  mosaic  image  is  obtained.  The  SR  mosaicing  
algorithm requires the size of the panorama frame as well as 
the offset in both x and y directions. These offsets are required 
to make sure a complete view of the mosaic output is 
obtained. 

Finally, the initial mosaic without SR and the output super 
resolved mosaic are compared to evaluate the performance of 
the SR mosaicing algorithm, we used three metrics: mean 
square error, peak signal-to-noise ratio, and singular value 
decomposition-based measure. These metrics are calculated 
and compared for the initial mosaic without SR and the output 
super resolved mosaic. 

 
1) Mean Square Error 

The mean square error (MSE) is used as a measurement of 
the effectiveness of the SR mosaicing algorithms. MSE 
represents the mean of the squared differences for every pixel.  

 

MSE = 
( ( , ) ( , ))

                 (10) 

Where,  I(i,j)  and  O(i,j)  are  the  (i,j)  th  pixel  values  in  the  
initial mosaic and the final SR mosaic respectively. N is the 
total number of pixels in each image. 

The lower the similarity between two images, the higher 
the MSE between them.  

 
 

2) Peak Signal- to-Noise Ratio  

The  peak  signal  to  noise  ratio  (PSNR)  is  used  as  a  
measurement of the difference between two images. PSNR of 
corresponding pixel values is defined as   

 

PSNR = 
10 log10(max ( ( , ), ( , )))2

MSE           (11) 

Where, MSE is the mean square error. PSNR is expressed in 
decibels  (dB)  and  a  lower  value  corresponds  to  a  higher  
difference between two images. 

 
 

 

 

       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
     

       
       
       
        

 
 
 

  Fig. 2. Flowchart of the SR mosaicing system 
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3) Singular Value Decomposition-based measure  

Singular value decomposition (SVD)-based measure is used 
to express the amount of distortion in terms of dissimilarity 
between  two  images.  Any  real  matrix  M  of  size  mxn  can  be  
decomposed into a product of 3 matrices M = USV ,  where U 
and V are orthogonal matrices of sizes mxm and nxn, 
respectively. S is an mxn diagonal matrix with the singular 
values of  M as its  diagonal  entries.  The columns of  U are left 
singular vectors of M, whereas the columns of V are called 
right singular vectors of M [22]. The left singular vectors of M 
are eigenvectors of MMT and the right singular vectors of M 
are eigenvectors of MTM. The non-zero singular values of M 
are the square roots of the non-zero eigenvalues of both MMT 
and MTM. Considering each image as a real matrix, a global 
SVD can be computed. Subsequently, the distance between the 
two sets of singular values corresponding to the mosaic with 
SR image and mosaic without SR image can also be measured 
as below. 

=                                                             (12) 

Where S  is the singular values of the initial mosaic image, 
S  is the singular values of the final SR mosaic image, and N is 
the total number of pixels in each image. A higher value for  
 
 
 
 
 
 
 
 
 
 
 
 

the SVD-based measure corresponds to a higher degree of 
difference between two images.  

As super resolution inherently means increasing the 
resolution  of  an  image  by  restoring  the  lost  frequency  
components, thus higher values of MSE or SVD-based 
measure  between  the  initial  mosaic  and  the  final  SR  mosaic  
indicate better performance of the SR mosaicing algorithm 
compared  to  the  lower  values  for  those  metrics.  Similarly,  a  
lower PSNR values between the mosaic without SR and 
mosaic with SR images correspond to improved performance 
of the SR algorithm. 

4  RESULTS AND DISCUSSION 
      A total of 36 data sets (10 sets in each of the three 
categories)  of  5  frames  each  have been used to evaluate the 
efficiency of the SR mosaicing algorithm. These data sets fall 
into three categories: 2D surface images, real 3D scene images, 
and airborne images from an Unmanned Aerial Vehicle (UAV) 
obtained during a 2011 University of North Dakota (UND) 
flight test. These frames were downsampled and added to 
blur using a circular averaging filter of radii 1 and 2 to 
generate input sequence for the SR mosaicing algorithm. Fig.  
4, 5, and 6 show examples of results for each category of the 
SR mosaicing algorithm. The maximum number of iterations 
was  chosen  as  7  for  all  the  three  categories.  This  is  the  
stopping criterion for the iterative procedure. 

 

 

 

 

 

 

 

 

 

      Fig. 3. Schematic of the SR system 
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However, the error between two successive steps of iterations 
can also be used as a stopping criterion. Fig. 4 shows an 
example of a 2D scene consisting of 5 frames (Fig. 4 a, b, c, d, 
and e) and their corresponding SR mosaicing output (Fig. 4 f). 
Fig. 5 shows an example of a 3D scene consisting of 5 frames 
(Fig. 5 a, b, c, d, and e) and their corresponding SR mosaicing 
output (Fig. 5 f). Fig. 6 shows an example of a UAV scene 
consisting of 5 frames (Fig. 6 a, b, c, d, and e) and their 
corresponding SR mosaicing output (Fig. 6 f). The input 
frames  are  blurry  as  we  can  see  from  the  figures.  It  can  be  
clearly visualized that the SR mosaicing algorithm has 
successfully generated higher resolution mosaicing output 
from those input frames. Fig.  7  and  Fig.  8  show  a  subjective  
comparison  of  the  mosaic  without  SR  and  mosaic  with  SR  
algorithm. Fig.  7  and  Fig.  8  show  a  subjective  comparison  of  
the mosaic without SR and mosaic with SR algorithm. 
 

    

 

       

 

                           

 
 
 
 
 
 
 
 

 
 

Fig. 4. Example of results corresponding to 2-D data sequence of frames 
and their corresponding SR mosaicing output: 

 
(a),(b),(c),(d), and (e) Input image frames 
(f) Corresponding SR mosaicing output 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

   

                

  

                         

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5. Example of results corresponding to real 3-D data sequence of 
frames and their corresponding SR mosaicing output: 

 
(a),(b),(c),(d), and (e) Input image frames 
(f) Corresponding SR mosaicing output 

 
 

   

                  

                      

 

                                                                        

 

 

 

 

 
Fig. 6. Example of results corresponding to real UAV data sequence of 

frames and their corresponding SR mosaicing output: 
 

(a),(b),(c),(d), and (e) Input image frames 
(f) Corresponding SR mosaicing output 

 
 

(a) (c) (b) 

(d) (e) 

(f) 

(a) (b) (c) 

(d) (e) 

(f) 

(a) (b) (c) 

(d) (e) 

(f) 
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                                                           Fig. 7. Mosaic without SR using one of the UAV data sequences 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                   Fig. 8. Corresponding mosaic with SR  
 
 
Higher values of MSE and SVD based measure indicates 

that the SR mosaicing recovers more high frequency 
components  and  hence  it  gives  a  smaller  PSNR  value.  When  
there  is  no  added  blur  to  the  input  sequence,  the  MSE  and  

SVD based values between the mosaic without SR and mosaic 
with SR are larger. However, when blur is added to the input 
sequence the MSE and SVD based values decrease and hence 
PSNR increases.   
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For all the three types of datasets, we recorded the 
behaviors of the three metrics while changing the pattern of 
datasets from no blur through less blur to more blur. Less blur 
means we used a circular averaging filter of radius 1, whereas 
‘more blur’ means we used a filter of radius 2. Fig. 7, 8 and 9 
show the behaviors of  the three metrics  for  2D scene,  real  3D 
scene and UAV scene respectively. As the pattern of datasets 
change from no blur to maximum blur, the MSE and SVD 
based values are expected to decrease because in the presence 
of  blur  the  algorithm  is  supposed  to  achieve  the  high  
frequency components less accurately.  

 
 

TABLE 1 
Behavior of the datasets for MSE 

Metric Types of 
datasets 

Behavior of number 
of sets 

Conclusion 

  
2D 

4 sets show a decrease 
in MSE 

 
 
 
 

Consistency of 
MSE is 60% 
maximum 

4 sets show random 
behavior in MSE 

 
MSE 

 
3D 

4 sets show a decrease 
in MSE 

5 sets show random 
behavior in MSE 

  
UAV 

6 sets show a decrease 
in MSE 

4 sets show random 
behavior in MSE 

 

TABLE 2 
Behavior of the datasets for PSNR 

Metric Types of 
datasets 

Behavior of number 
of sets 

Conclusion 

  
2D 

4 sets show a decrease 
in PSNR 

 
 
 
 

Consistency of 
PSNR is 60% 

maximum 

4 sets show random 
behavior in PSNR 

 
PSNR 

 
3D 

4 sets show a decrease 
in PSNR 

5 sets show random 
behavior in PSNR 

  
UAV 

6 sets show a decrease 
in PSNR 

4 sets show random 
behavior in PSNR 

 

 

 

 

 

TABLE 3 
Behavior of the datasets for SVD based measure 

Metric Types of 
datasets 

Behavior of number 
of sets 

Conclusion 

  
2D 

6 sets show a decrease 
in SVD based 

measure 

 
 
 
 
 

Consistency of 
SVD based 

metric is 75% 
Maximum 

2 sets show random 
behavior in SVD based 

measure 
 
SVD 
based 
metric 

 
3D 

6 sets show a decrease 
in SVD based measure 

3 sets show random 
behavior in SVD based 

measure 
  

UAV 
6 sets show a decrease 
in SVD based measure 

4 sets show random 
behavior in SVD based 

measure 
 

Two sets of data sequence from the 2D type and one set of 
data sequence  from  the  3D  type  failed  in  the  evaluation  
process. Possible  reason  could  be  the  addition  of  blur  to  the  
datasets. The first step of the algorithm tries to interpolate the 
blurred  LR  frames  and  finds  the  SIFT  feature  points  to  
perform initial mosaicing. However lack of enough matching 
SIFT feature points between successive frames makes the 
algorithm crashes time to time.   

As one can see from Table 1, Table 2, and Table 3 the SVD 
based measure is more consistent than the other two metrics. 
This measure computes the improvements of the SR 
mosaicing algorithm both across different distortions types 
and within a given distortion type at different distortion levels 
[20]. 

5  CONCLUSION 
In this paper a SR mosaicing algorithm is proposed. The 

proposed algorithm is robust and does not require much 
computational complexity. Use of regularized based approach 
stabilizes the algorithm against ill-pose nature of the inverse 
problem. Objective evaluation using three different 
performance metrics shows that the proposed algorithm could 
be efficiently used in UAS applications. Extensive testing on 
several sets of data falling into three categories reveal that the 
proposed performance metrics are effective in evaluating the 
quality of SR mosaicing output. Although, MSE and PSNR 
metrics preserves the simplicity in computation, they lack 
consistency in quantitative evaluation and might exhibit poor 
correlation with the human visual system. On the other hand, 
singular value decomposition-based measure shows much 
more consistency in objective evaluation while preserving the 
computational simplicity.  
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